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Relaxed states of a plasma column are found analytically in single-fluid and Hall magnetohydro-

dynamics (MHD). We perform complete minimization of the energy with constraints imposed by

invariants inherent in the corresponding models. It is shown that the relaxed state in Hall MHD is a

force-free magnetic field with uniform axial flow and/or rigid azimuthal rotation. In contrast, the

relaxed states in single-fluid MHD are more complex due to the coupling between velocity

and magnetic field. Cylindrically and helically symmetric relaxed states are considered for both

models. Helical states may be time dependent and analogous to helical waves, propagating on a

cylindrically symmetric background. Application of our results to reversed-field pinches (RFP) is

discussed. The radial profile of the parallel momentum predicted by the single-fluid MHD

relaxation theory is shown to be in reasonable agreement with experimental observation from the

Madison symmetric torus RFP experiment. VC 2012 American Institute of Physics.

[doi:10.1063/1.3676600]

I. INTRODUCTION

Many magnetized plasma systems exhibit the phenom-

enon of self-organization—the spontaneous tendency to

evolve toward preferred configurations with ordered

structure. Theoretical prediction of such configurations is a

long-standing problem for both laboratory and astrophysical

applications. Due to the complexity and nonlinearity of

plasma behavior there is no universal mathematical method-

ology, except direct numerical simulations, that would be

able to describe the final self-organized states in all systems.

Among the plasma systems, whose self-organized states

can be predicted theoretically, are the systems without exter-

nal energy supply. In such isolated systems, the process of

self-organization is usually referred to as relaxation. The

concept of plasma relaxation was proposed by Taylor,1 who

conjectured that during turbulent dynamics a slightly resis-

tive magnetohydrodynamic (MHD) system tends to mini-

mize its magnetic energy while conserving the total

magnetic helicity. The underlying basis of this approach is

the principle of selective decay of invariants,1–3 i.e., one or

more ideal invariants of the system (conserved in the absence

of dissipation) are less susceptible to dissipation than energy

and thus can be considered as constants during the relaxation

process. Mathematically the relaxation theory is formulated

as a variational procedure for obtaining a relaxed state by

minimizing the energy subject to constraints.

The Taylor theory has been successfully tested in

experiments4–6 and applied for explaining the magnetic

structures in laboratory plasmas such as the reversed-field

pinch (RFP), multipinch, and spheromak.2,3 However, the

classical Taylor theory does not include possibility of flows

that are ubiquitous in experimentally observed relaxed states.

The origin of these flows is not well understood; laboratory

plasmas rotate in the toroidal and poloidal directions even in

the absence of externally applied torques (intrinsic rotation).

Further, the experimental parameters are such that the

single-fluid MHD model may not be strictly valid, and the

inclusion of the effects of separate ion and electron fluids in

the model may be required.

The present work is motivated by the recent progress in

plasma velocity measurements in the Madison symmetric

torus RFP experiment, which show an abrupt change of the

global flows during the relaxation events. Detailed temporal

and spatial measurements of flow dynamics indicate signifi-

cant radial angular momentum transport and flattening of the

radial flow profiles.7

The goal of the present paper is to determine the mini-

mum energy (relaxed) states for a cylindrical RFP, to ana-

lyze the possibility of plasma flows in such states in both

standard (single-fluid) and Hall MHD (a two-fluid model

with massless electrons), and to elucidate their global proper-

ties. Since the RFP has significant fraction of “bad” magnetic

curvature caused by poloidal magnetic field, the effect of the

toroidal curvature can be ignored. The geometry of periodic

cylinder is a good approximation for RFP theory and simula-

tions.2,3 We employ a variational procedure that includes all

ideal invariants inherent in corresponding models. While the

experiments are open systems that interact with the external

environment through applied voltages, here we consider only

closed systems. This is consistent with Taylor’s approach,1,2

which has been reliable for predicting the general properties

of relaxed magnetic fields without flow. The fields and flows

predicted by the present theory may be relevant to the flows

that are observed after the crash phase of sawtooth cycle in

the RFP. Of course, we cannot comment on the origin of

these flows, only on their relaxed properties.

In the framework of single-fluid MHD, the problem of

finding relaxed states with flows in geometries relevant to

1070-664X/2012/19(1)/012111/13/$30.00 VC 2012 American Institute of Physics19, 012111-1

PHYSICS OF PLASMAS 19, 012111 (2012)

Downloaded 15 Apr 2013 to 128.104.166.218. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://pop.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.3676600
http://dx.doi.org/10.1063/1.3676600
http://dx.doi.org/10.1063/1.3676600


RFP is addressed in several papers.8–11 The relaxed flows in

these papers are obtained by including into energy minimiza-

tion procedure the additional constraints, such as cross helic-

ity and momentum (or its components). It should be

emphasized here that the cross helicity is an ideal invariant

of incompressible MHD and in some special cases of com-

pressible MHD (e.g., Ref. 8); it is also a rugged invariant

during relaxation in the presence of dissipation, which is

confirmed by numerical simulations.12 Energy minimization

with the cross helicity constraint in periodic cylinder yields a

relaxed state with flow parallel to force-free magnetic field9

(results are corrected in Ref. 10). In Refs. 8 and 11 in addi-

tion to the cross helicity, the total angular momentum is

taken into account as a conserved quantity in toroidal geome-

try. This leads to a relaxed state with combination of parallel

flow and rigid toroidal rotation. In present paper, we general-

ize the results of Refs. 9 and 10 by considering along with

the cross helicity the total angular and axial momenta as

additional invariants of the cylindrical plasma pinch in

incompressible MHD.

The relaxation problem in the framework of Hall MHD

is considered in numerous papers.13–23 In Refs. 13–20, the use

of electron and ion helicities as invariants during relaxation is

theoretically substantiated and the double-Beltrami structure

of the relaxed states in Hall MHD is revealed. References 13,

14, and 19 give several analytical examples of the relaxed

states for different geometries. However, these solutions do

not correspond to true minimum energy states for fixed elec-

tron and ion helicities since the minimization procedure is not

completed. This is because the unknown Lagrange multipliers

used in the variational procedure are not specified in terms of

the initial values of the invariants. A more complete analysis

is reported in Ref. 21, where the energy of relaxed states is

found in toroidal systems as a function of electron and ion

helicities. Although the general solution of the double-

Beltrami equation has two eigenfunctions, Ref. 21 uses only

one of them. This precludes the possibility of two different

spatial scales in the relaxed state (as in Refs. 19, 22, and 23).

In Ref. 22, relaxed states are obtained as a linear combination

of two orthogonal Beltrami eigenfunctions with eigenvalues

k1 and k2, respectively, and the energy is expressed as a func-

tion of electron and ion helicities and eigenvalues k1 and k2.

The next step is to find a pair of eigenvalues ðk1; k2Þ that min-

imizes the energy; however, this step is missing in Ref. 22.

The full energy minimization of the incompressible Hall

MHD system with fixed electron and ion helicities is com-

pleted in Ref. 23 assuming the general geometry and ortho-

gonality of the basis Beltrami vectors (which is not true for

cylindrically symmetric states). The result is quite surprising:

the relaxed state in Hall MHD is always a force-free mag-

netic field with no plasma flows, i.e., nothing but the Taylor

state. Moreover, the authors of Ref. 23 question the conser-

vation of the ion helicity, arguing that it is not a rugged

invariant during relaxation and, therefore, it should not be

included into energy minimization procedure. The fact that

the ion helicity is not conserved in Hall MHD relaxation is

confirmed by numerical simulations.23–25 In present paper,

we extend the results of Ref. 23 for cylindrical plasma pinch

in incompressible Hall MHD assuming the conservation of

both electron and ion helicities and total angular and axial

momenta. These velocity related invariants allows us to

obtain a relaxed Hall state with plasma flows.

One of the novel results of our paper is the prediction of

non-stationary relaxed states, which have the form of helical

waves propagating on a cylindrically symmetric background.

Such states are realized in both single-fluid and Hall MHD

when some of velocity related invariants are not zero.

The paper is organized as follows. In Sec. II, the invari-

ants of incompressible single-fluid and Hall MHD models

are introduced. In Secs. III and IV, the minimum energy

states are obtained for corresponding models. In Sec. V,

comparison of these states with experimental observations is

performed. In Sec. VI, these results are summarized and their

application for reversed-field pinches is discussed.

II. STATEMENT OF THE PROBLEM

We consider the problem of finding the minimum

energy (relaxed) states of an axially periodic cylindrical

plasma pinch, with a periodicity length L (Fig. 1). We

assume that plasma is incompressible with spatially uniform

density q, and it is surrounded by a perfectly conducting

shell (flux conserver) of radius a. The incompressibility

assumption is relevant to RFP physics due to the fact that

relaxation in these systems is provided by tearing modes.

These modes are slow on Alfvenic time scale and, therefore,

essentially incompressible.26 Moreover, the resulting incom-

pressible relaxed states are in good agreement with experi-

mental observations, as shown below in Sec. V.

Under these assumptions the plasma is described by

equations of ideal incompressible Hall MHD, which in non-

dimensional form are14

@v

@s
þr

�
pþ v2

2

�
¼ v� ðr � vÞ þ ðr � bÞ � b;r � v ¼ 0;

(1)

@b

@s
¼ r� ðv� b� �ðr � bÞ � bÞ;r � b ¼ 0: (2)

Here, all physical quantities are normalized,

r ¼ R

a
; z ¼ Z

a
; l ¼ L

a
; s ¼ VA

a
t; v ¼ V

VA
; b ¼ B

B0

;

p ¼ P

qV2
A

;

where the Alfvén velocity VA and the characteristic magnetic

field B0 are defined as

FIG. 1. Geometry of the problem.
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VA ¼
B0ffiffiffiffiffiffiffiffi
4pq
p ; B0 ¼

U0

pa2
; (3)

with U0 being a total axial magnetic flux, which is constant

due to perfectly conducting boundary. Equations (1) and (2)

also contain the non-dimensional ion skin depth (or Hall pa-

rameter) �, which is defined as

� ¼ di

a
¼ c

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i

4pqe2Z2

s
; (4)

where mi and eZ are ion mass and charge, c is speed of light.

In the limit �! 0, single-fluid MHD is recovered.

We adopt cylindrical coordinate system fr;u; zg with

volume element d3r ¼ rdr du dz. In order to solve Eqs. (1)

and (2) uniquely, we have to specify boundary conditions for

velocity and magnetic field. At an impermeable surface the

normal component of velocity vanishes,

vr

����
r¼1

¼ 0; (5)

and the normal component of magnetic field and the tangen-

tial component of electric field are zero at the perfectly con-

ducting boundary, which is equivalent to

br

����
r¼1

¼ 0; �jr

����
r¼1

¼ 0; (6)

where j ¼ r� b is normalized current density. Note that in

single-fluid MHD (� ¼ 0) the second condition in Eq. (6) is

satisfied automatically.

According to the fundamental idea of the Taylor

theory, a weakly dissipative system reaches a state of mini-

mum energy without significant change of certain global

quantities. These quantities usually correspond to ideal

invariants; they are conserved in ideal system and decay

slowly (slower than energy) in presence of dissipation. A

number of these ideal invariants inherent in system [Eqs.

(1) and (2)] have been introduced into analysis.1,9,11,13,14 In

this section, we examine these invariants for cylindrical

pinch geometry assuming boundary conditions [Eqs. (5) and

(6)].

The sum of the kinetic and magnetic energies,

E ¼ 1

2

ð
ðv2 þ b2Þd3r; (7)

is an ideal invariant in the incompressible closed system.

Indeed, its time derivative is reduced to a surface integral,

@E

@s
¼ �

ð
S

��
pþ v2

2

�
vþ b� ðv� b� �j� bÞ

�
� dS;

which is zero for boundary conditions [Eqs. (5) and (6)]. In a

dissipative incompressible closed system, energy E can only

decrease in time. This validates the procedure of energy min-

imization in relaxation theory.

Magnetic helicity I1 is equivalent to electron helicity He

for massless electrons,

I1 � He ¼
ð

A � r � Ad3r; I1

����
s¼0

¼ plK: (8)

Here A is vector potential, such that b ¼ r� A. The time

dynamics of vector potential follows from Eq. (2):

@A

@s
¼ �r/þ v� b� �ðr � bÞ � b;

where / is normalized electric potential. As a result, the

time derivative of magnetic helicity is

@I1

@s
¼ �

ð
S

ð/bþ A� ðv� b� �j� bÞÞ � dS;

which is zero if electric potential / is periodic in z and

boundary conditions [Eqs. (5) and (6)] are satisfied. There-

fore, magnetic helicity is an ideal invariant; it can change

only in presence of resistivity. For our study it is important

that in resistive systems magnetic helicity is more robust

than the energy,1–3 i.e., we can assume that its value is

approximately constant in time and equal to its initial value,

I1 ¼ plK, where pl is dimensionless volume of the cylinder

and K is the volume-averaged density of the magnetic helic-

ity. For unique definition of vector potential and, therefore,

magnetic helicity we use a gauge invariance condition27

ðl

0

Az

����
r¼1

dz ¼ 0: (9)

Single-fluid incompressible MHD system (� ¼ 0) has

the well-known ideal invariant–cross helicity,

I2 ¼
ð

v � b d3r; I2

����
s¼0

¼ plM: (10)

Indeed, its time derivative is

@I2

@s
¼ �

ð
S

��
pþ v2

2

�
bþ v� ðv� bÞ

�
� dS;

which is zero for boundary conditions [Eqs. (5) and (6)].

Cross helicity can be considered also as a rugged invariant

(approximately conserved quantity) during relaxation. Its

ruggedness in a dissipative single-fluid MHD system is con-

firmed by numerical simulations for cases, where relaxation

is slow on Alfvenic time scales12—typical situation for RFP

experiments, in which relaxation is provided by slow tearing

modes.3 In our single-fluid MHD analysis, we assume that

the cross helicity is constant and equal to its initial value,

I2 ¼ plM.

The analogue of the cross helicity in incompressible

Hall MHD (� 6¼ 0) is generalized cross helicity,

Î2 ¼
ð

v � ðbþ �
2
r� vÞd3r; Î2

����
s¼0

¼ plM̂: (11)

It is related to ion helicity

Hi ¼
ð
ðAþ �vÞ � r � ðAþ �vÞd3r
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by the equation

Hi ¼ He þ 2�Î2 þ �
ð

S

ðv� AÞ � dS:

Their time derivatives are, respectively,

@ Î2

@s
¼ �

ð
S

�
pbþ v� ðv� bÞ þ �

2
ðpxþ v� ðv� xÞ

� v� ðj� bÞÞ
�
� dS;

@Hi

@s
¼ �

ð
S

��
/þ �

�
pþ v2

2

��
ðbþ �xÞ þ ðAþ �vÞ

� ðv� ðbþ �xÞÞ
�
� dS;

where x ¼ r� v is the fluid vorticity. Taking into account

boundary conditions [Eqs. (5) and (6)], time derivatives of

the generalized cross helicity and ion helicity become

@ Î2

@s
¼ �

2

ð
S

�
v2

2
� p

�
x � dS;

@Hi

@s
¼ �

ð
S

�
v � A� /þ �

�
v2

2
� p

��
x � dS:

From these equations one can see that in order for Î2 and Hi

to be conserved, an extra boundary condition must be

imposed,14 which is

xr

����
r¼1

¼ 0: (12)

This condition is satisfied automatically for all time if it is

satisfied initially at s ¼ 0. This is guaranteed by boundary

conditions [Eqs. (5) and (6)] and by equation of ideal dynam-

ics of the fluid vorticity

@x

@s
¼ r� ðv� xþ j� bÞ; (13)

which is obtained from Eq. (1) by taking the curl. In the fol-

lowing, we assume that the generalized cross helicity (and,

hence, the ion helicity) is conserved during relaxation and its

value is Î2 ¼ plM̂. As we show in Sec. IV, relaxed state in

incompressible Hall MHD is completely independent of this

invariant: energy minimizations with or without generalized

cross helicity lead to the same result.

Equations (2) and (13) being similar in structure also

guarantee the conservation of the axial fluxes of the magnetic

field and the fluid vorticity, respectively,

I3 ¼
ð2p

0

ð1

0

bzrdrdu; I3

����
s¼0

¼ p; (14)

I4¼
ð2p

0

ð1

0

xzrdrdu¼
ð2p

0

vu

����
r¼1

du; I4

����
s¼0

¼ 2pXb; (15)

where we used normalization [Eq. (3)] and assumed that the

azimuthally averaged angular velocity at the boundary is Xb.

Their time derivatives are

@I3

@s
¼
ð2p

0

ðv� b� �j� bÞ
����
r¼1

� eudu;

@I4

@s
¼
ð2p

0

ðv� xþ j� bÞ
����
r¼1

� eudu:

Note that magnetic flux [Eq. (14)] is constant in both single-

fluid and Hall MHD due to boundary conditions [Eqs. (5)

and (6)], while fluid vorticity flux [Eq. (15)] is conserved

only in Hall MHD when additional condition [Eq. (12)] is

satisfied.

The geometrical symmetry of the pinch configuration

yields two more ideal invariants, the axial and angular

momenta,

I5 ¼
ð

vzd
3r; I5

����
s¼0

¼ plu; (16)

I6 ¼
ð

rvud3r; I6

����
s¼0

¼ plX
2
: (17)

Their time derivatives are zeros for boundary conditions

[Eqs. (5) and (6)] since

@I5

@s
¼
ð

S

ðbzb� vzvÞ � dS;

@I6

@s
¼
ð

S

ðrbub� rvuvÞ � dS:

The initial values of these invariants can always be attributed

to some uniform flow with velocity u in z-direction and a

rigid rotation with angular velocity X in u-direction.

In the following, we use these invariants as constraints

in energy minimization procedure.

III. RELAXED STATES IN SINGLE-FLUID MHD

In this section, we study single-fluid MHD (� ¼ 0)

relaxed states. We consider two cases here: the most general

case, where relaxed state corresponds to a minimum of

energy [Eq. (7)] subject to constraints given by Eqs. (8),

(10), (14), (16), and (17); and the case, where we ignore axial

and angular momenta constraints given by Eqs. (16) and (17)

for the reasons explained below.

A. Energy minimization with full set of invariants

First we consider the case, where relaxed state is found

by minimizing energy [Eq. (7)] with the most general set of

invariants [Eqs. (8), (10), (14), (16), and (17)] inherent in

incompressible single-fluid MHD in periodic cylinder. The

Lagrange multipliers method results in variational problem,

d

�
Eþ l1ðI1 � plKÞ þ l2ðI2 � plMÞ þ l3ðI3 � pÞ

þ l5ðI5 � pluÞ þ l6

�
I6 �

plX
2

��
¼ 0; (18)

which determines a conditional extremum of E (it is mini-

mum since E is positive definite, and, therefore, the resulting

equilibrium is ideally stable). The Euler equations of varia-

tional problem [Eq. (18)] are
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� dv : v0 þ l2b0 þ l5ez þ l6reu ¼ 0; (19)

� dA : r� b0 þ 2l1b0 þ l2r� v0 ¼ 0; (20)

� dlk : I1 ¼ plK; I2 ¼ plM; I3 ¼ p; I5 ¼ plu;

I6 ¼
plX

2
: (21)

Equations (19) and (20) can be reduced to one equation for

magnetic field

r� b0 � kb0 ¼
2l2l6

1� l2
2

ez; (22)

where

k ¼ 2l1

l2
2 � 1

:

Thus, the relaxed magnetic field is no longer force-free as in

classical Taylor theory due to its coupling with the relaxed

flow. Note that the amplitude of the magnetic field b0 and the

Lagrange multipliers l1, l2, l5, l6 are not arbitrary, they are

determined by constraints from Eq. (21). Therefore, the relaxed

state depends only on the initial values of the invariants.

The most general solution to Eqs. (19) and (20) satisfy-

ing gauge invariance condition [Eq. (9)] and constraints

I3 ¼ p, I5 ¼ plu, I6 ¼ plX=2 is a superposition of a cylindri-

cally symmetric mode (with the azimuthal mode number

m ¼ 0 and the axial wave-number kz ¼ 0) and modes with

m 6¼ 0 or kz 6¼ 0,

A0 ¼
r

2
eu þ

C

k
½ðJ1ðkrÞ � J1ðkÞrÞeu

þ ðJ0ðkrÞ � J0ðkÞÞez� þ
1

k
H; (23)

b0¼r�A0¼ ezþC

�
J1ðkrÞeuþ

�
J0ðkrÞ�2J1ðkÞ

k

�
ez

�
þH;

(24)

v0 ¼ Xreu þ uez � l2C

��
J1ðkrÞ � 4J2ðkÞ

k
r

�
eu

þ
�

J0ðkrÞ � 2J1ðkÞ
k

�
ez

�
� l2H; (25)

where J denotes Bessel functions of the first kind, coefficient

C is

C ¼ kð1� l2
2Þ � 2Xl2

2J1ðkÞ þ 2l2
2J3ðkÞ

;

and H represents the helical part of the solution (modes with

m 6¼ 0 or kz 6¼ 0), such that r�H ¼ kH. Substituting these

expressions into Eqs. (7), (8), and (10), we obtain the

volume-averaged densities of the energy, the magnetic helic-

ity and the cross helicity,

E

pl
¼ 1

2
þ u2

2
þ X2

4
þ ð1þ l2

2ÞC2

2
ð2J2

1ðkÞ � 3J0ðkÞJ2ðkÞ

� J2
2ðkÞÞ �

4l2
2C2J2

2ðkÞ
k2

þ ð1þ l2
2ÞD

2
; (26)

K ¼ 2C J2ðkÞ
k

þ 2C2

k
ðJ2

1ðkÞ � 2J0ðkÞJ2ðkÞ � J2
2ðkÞÞ þ

D

k
;

(27)

M ¼ uþ 2XC J2ðkÞ
k

� l2C2

�
2J2

1ðkÞ � 3J0ðkÞJ2ðkÞ

� J2
2ðkÞ �

8J2
2ðkÞ
k2

�
� l2D; (28)

where D is a non-negative quantity characterizing magnitude

of the helical part,

D ¼ 1

pl

ð
H2d3r: (29)

Consider first the cylindrically symmetric solution with

D ¼ 0. In this case Eqs. (27) and (28) are used to find l2 and

k through the initial values of helicities, K and M. The result-

ing volume-averaged energy density of the relaxed state

Ecs ¼ ðE=plÞD¼0 as a function of K is shown in Fig. 2. A

sample of the relaxed state with non-zero plasma flows is

shown in Fig. 3. It should be emphasized here that the cylin-

drically symmetric MHD relaxed states are always ideal

equilibria, i.e., they satisfy Eqs. (1) and (2) with @=@s ¼ 0.

The helical part of the solution H corresponding to

D 6¼ 0 can be presented as a linear combination of modes

with non-zero azimuthal mode numbers m and/or axial wave

numbers kz ¼ pn=l (m and n are integer),

hk;m;kz
¼mkJmðarÞþkzarJ0mðarÞ

a2r
cosðmuþkzzþhÞer

�mkzJmðarÞþkarJ0mðarÞ
a2r

sinðmuþ kzzþhÞeu

þ JmðarÞsinðmuþkzzþhÞez; (30)

where a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2

z

q
is a radial wave-number, h is an arbi-

trary phase, and r� hk;m;kz
¼ khk;m;kz

by definition. Each

helical mode given by Eq. (30) should satisfy boundary con-

dition [Eq. (6)] resulting in

FIG. 2. Volume-averaged energy density of cylindrically symmetric MHD

relaxed state [Eqs. (23)–(25)] Ecs as a function of magnetic helicity K (solid

curve) and its difference with energy density of helically distorted MHD

relaxed state Ehel in domain of its existence (dashed curve). Note different

scales for positive and negative energies. Results are presented for cross hel-

icity M ¼ 0:1, axial momentum u ¼ 0, angular momentum X ¼ 0 and

k ¼ 3:11 for helical state.
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mkJmðaÞ þ kzarJ0mðaÞ ¼ 0: (31)

For given m and kz, this equation determines k (Fig. 4). Note

that only one value of k is possible in the relaxed state as can

be seen from Eq. (22). The description of the helically dis-

torted relaxed state is completed by expressing its magnitude

D and the Lagrange multiplier l2 from Eqs. (27) and (28) in

terms of the initial values of helicities, K and M. Our calcula-

tions show that in the domain of its existence the helically

distorted state has lower energy Ehel ¼ ðE=plÞD>0 than the

cylindrically symmetric state (Fig. 2); besides, the lowest

energy is achieved when the value of k is minimal. This min-

imal value k ¼ 3:11 corresponds to helical mode with m ¼ 1

and kz ¼ 1:23 (Fig. 4); in our following analysis we assume

that the helical distortion is due to this mode, i.e.,

H ¼ Chh

����
k¼3:11; m¼1; kz¼1:23

: (32)

The quantity D defined in Eq. (29) can be expressed in terms

of the amplitude of the helical distortion Ch,

D ¼ C2
hk

2J2
mðaÞ

a2

�
1þ m2

k2
z

� mk
kza2

�
: (33)

The domains occupied by cylindrically symmetric and

helically distorted relaxed states in the K �M plane are

presented in Fig. 5, the boundary between them can be deter-

mined by setting D ¼ 0 in Eqs. (27) and (28). The classical

force-free Taylor state corresponds to the line M ¼ 0 in this

figure; it becomes helically distorted for values of magnetic

helicity larger than K ¼ 4:08, which is in agreement with

Ref. 28.

The interesting property of the helically distorted

relaxed MHD states is their oscillatory nature. Indeed, sub-

stituting Eqs. (24), (25), (30), and (32) in Eqs. (1) and (2)

with � ¼ 0 one obtains that the phase h of the helical distor-

tion is changing with time as

@h
@s
¼ �k � ðv0 þ l2b0Þ

¼ �m

�
Xþ 4l2CJ2ðkÞ

k

�
� kzðuþ l2Þ; (34)

where k ¼ m=reu þ kzez is the wave-vector. In other words,

the non-cylindrical part of the relaxed MHD state is the heli-

cal wave, which is propagating with a phase velocity

vph ¼ v0 þ l2b0. At each point of the fluid, relaxed velocity

and magnetic field are oscillating near the cylindrically sym-

metric state with the frequency x ¼ @h=@s (Fig. 6).

Fig. 7, shows the F�H diagram of the relaxed MHD

states with different values of cross helicity M and angular

momentum X. The reversal parameter F and pinch H are

defined here as

F �
hBz

��
R¼a
iu;z

B0

¼ 1� CJ2ðkÞ; (35)

H �
hBu

��
R¼a
iu;z

B0

¼ CJ1ðkÞ; (36)

where brackets hiu;z denote averaging over u and z. As fol-

lows from Fig. 7, the presence of the initial flow (non-zero

cross helicity M or total angular momentum X) in cylindrical

plasma pinch affects the relaxed magnetic field significantly.

This is due to the coupling of the velocity and the magnetic

FIG. 3. Cylindrically symmetric MHD relaxed state [Eqs. (23)–(25)] with

magnetic helicity K ¼ 2, cross helicity M ¼ 0:1, axial momentum u ¼ 0,

and angular momentum X ¼ 0:1. Solid lines are components of magnetic

field (left vertical axis) and dashed lines are components of velocity (right

vertical axis).

FIG. 4. Eigenvalues k of helical modes [Eq. (31)] with different azimuthal

mode numbers m and axial wave numbers kz. For periodic cylinder of finite

periodicity l, the axial wave numbers are discrete: kz ¼ 2pn=l, where n is

integer.

FIG. 5. Domains occupied by cylindrically symmetric and helically dis-

torted MHD relaxed states [Eqs. (23)–(25)] in the plane K �M (magnetic

helicity�cross helicity) for axial momentum u ¼ 0 and different values of

angular momentum X.
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field that occurs in Eq. (22) through the term on the right

hand side. Such coupling does not take place in the systems

without axial symmetry where the angular momentum is not

conserved, e.g., in a periodic rectangular box. In this case, a

relaxed magnetic field corresponds to a force-free Taylor

state and it has the same structure independent of the initial

flows and determined by the value of magnetic helicity

only.24,25

B. Energy minimization without momenta invariants

In order to obtain a relaxed state, which more realisti-

cally reflects the features of RFP, we have to exclude both

axial I5 and angular I6 momenta invariants [Eqs. (16) and

(17), respectively] from the energy minimization procedure

for the following reasons. The angular momentum invariant

I6 is an artifice of the idealized geometry of periodic cylin-

der, it does not have an analogue in toroidal systems such as

RFP. Although the axial momentum invariant I5 has a coun-

terpart in toroidal systems, we also discard it because it is

not conserved in RFP experiment.7 Such “fragility” of the

axial momentum invariant I5 in real experiment can be

explained by an important role of the viscous dissipation due

to no-slip condition at the radial boundary. Results of this

subsection reproduce in part results from Ref. 9 with correc-

tions in Ref. 10.

The Euler equations describing a single-fluid MHD

relaxed state under these assumptions are

� dv : v0 þ l2b0 ¼ 0; (37)

� dA : r� b0 þ 2l1b0 þ l2r� v0 ¼ 0; (38)

� dlk : I1 ¼ plK; I2 ¼ plM; I3 ¼ p: (39)

Equations (37) and (38) lead to one equation for a relaxed

magnetic field,

r� b0 ¼ kb0; k ¼ 2l1

l2
2 � 1

; (40)

which means that magnetic field relaxes to a force-free Tay-

lor state. Notable feature of this relaxed state is that the flow

is parallel to the magnetic field as seen from Eq. (37). The ra-

dial structure of this relaxed state is given by

A0 ¼
1

2J1ðkÞ
½J1ðkrÞeu þ ðJ0ðkrÞ � J0ðkÞÞez� þ

Chh

k
; (41)

b0 ¼ r� A0 ¼
k

2J1ðkÞ
½J1ðkrÞeu þ J0ðkrÞez� þ Chh; (42)

v0 ¼ �l2b0 ¼ �
l2k

2J1ðkÞ
½J1ðkrÞeu þ J0ðkrÞez� � l2Chh;

(43)

where helical part of the solution h is defined in Eq. (30).

Here, the parameter k (for cylindrically symmetric state) or

amplitude of the helical part Ch (for helically distorted state)

have to be specified from the magnetic helicity constraint,

I1 ¼ plK, while Lagrange multiplier l2 is determined from

the cross helicity constraint, I2 ¼ plM,

K ¼ k
2

1� J0ðkÞJ2ðkÞ
J2

1ðkÞ

� �
þ D

k
; (44)

W � 1

2pl

ð
b2

0 dr3 ¼ k2

4
1� J0ðkÞJ2ðkÞ

J2
1ðkÞ

� �
þ kJ0ðkÞ

4J1ðkÞ
þ D

2
;

(45)

l2 ¼ �
M

2W
; (46)

where D is magnitude of the helical distortion given by Eq.

(33) and W is volume-averaged magnetic energy of the

relaxed state. The sum of kinetic and magnetic energy of the

state is

E ¼ ð1þ l2
2ÞW ¼ W þ M2

4W
: (47)

Therefore, for relatively small values of cross helicity M the

system in many aspects is similar to the classical Taylor

relaxed state. In particular, the transition to a helically

FIG. 7. Reversal parameter F [Eq. (35)] vs. pinch H [Eq. (36)] for the

relaxed MHD states [Eqs. (23)–(25)] with axial momentum u ¼ 0, different

values of cross helicity M and angular momentum X. The initial straight

intervals and the final point of the graphs (H ¼ 1:55, F ¼ �1:55) corre-

spond to helically distorted states.

FIG. 6. Values of oscillation frequency x ¼ @h=@s [Eq. (34)] of the helical

distortion in the plane K �M (magnetic helicity�cross helicity) for MHD

relaxed state [Eqs. (23)–(25)] with axial momentum u ¼ 0 and angular

momentum X ¼ 0.
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distorted relaxed state occurs if value of magnetic helicity is

larger than K ¼ 4:08; the helical state in this case has the

lowest possible value of k ¼ 3:11 corresponding to m ¼ 1

and kz ¼ 1:23. This situation is violated when the cross hel-

icity M is comparable to the magnetic energy W of the

relaxed state. In fact, if M > 2W then the minimum energy

state is cylindrically symmetric (Fig. 8).

In contrast to the relaxed states from Sec. III A, the

states described by Eqs. (41)–(43) are always stationary and

do not possess traveling helical waves.

IV. RELAXED STATES IN HALL MHD

In this section, we consider the Hall MHD (� 6¼ 0)

relaxed states corresponding to a minimum of energy [Eq.

(7)] subject to constraints given by Eqs. (8), (11), and (14)-

(17). As in Sec. III, we follow the standard procedure of min-

imization by applying the Lagrange multipliers method.

Then the Euler equations of variational problem are

� dv : v0 þ l2ðb0 þ �r� v0Þ þ l5ez þ l6reu ¼ 0; (48)

� dA : r� b0 þ 2l1b0 þ l2r� v0 ¼ 0; (49)

� dlk : I1 ¼ plK; Î2 ¼ plM̂; I3 ¼ p; I4 ¼ 2pXb;

I5 ¼ plu; I6 ¼
plX

2
:

(50)

Equations (48) and (49) can be reduced to one equation for

magnetic field

�l2r�r� b0 þ ð1� l2
2 þ 2�l1l2Þr � b0 þ 2l1b0

¼ 2l2l6 ez: (51)

A solution to this equation is the so-called double Beltrami

flow,19

b0 ¼ C1b1 þ C2b2 þ
l2l6

l1

ez; r� b1;2 ¼ k1;2b1;2; (52)

where k1;2 are two roots of quadratic eigenvalue problem

derived from homogeneous part of Eq. (51),

k1;2 ¼
�ð1� l2

2þ 2�l1l2Þ6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� l2

2þ 2�l1l2Þ2� 8�l1l2

q
2�l2

:

(53)

The presence of two spatial scales associated with eigenval-

ues k1 and k2 is typical for the double Beltrami flows arising

in the Hall MHD relaxation theory.14,19,22,23

Similar to single-fluid MHD case, the most general solu-

tion to Eqs. (48) and (49) satisfying constraints I3 ¼ p,

I4 ¼ 2pXb, I5 ¼ plu, I6 ¼ plX=2 is a superposition of cylin-

drically symmetric and helical modes,

A0 ¼
r

2
eu þ

X
j¼1;2

�
Cj

kj
ðJ1ðkjrÞ � J1ðkjÞrÞeu

þ Cj

kj
ðJ0ðkjrÞ � J0ðkjÞÞez þ

Hj

kj

�
; (54)

b0 ¼ r� A0 ¼ ez þ
X
j¼1;2

�
CjJ1ðkjrÞeu

þ Cj

�
J0ðkjrÞ �

2J1ðkjÞ
kj

�
ez þHj

�
; (55)

v0 ¼ Xreu þ uez �
X
j¼1;2

ðkj þ 2l1Þ
kjl2

�
Cj

�
J1ðkjrÞ �

4J2ðkjÞ
kj

r

�
eu

þ Cj

�
J0ðkjrÞ �

2J1ðkjÞ
kj

�
ez þHj

�
; (56)

where H1;2 are the helical parts of the solution, such that

r�H1;2 ¼ k1;2H1;2, and the coefficients C1;2 are

C1¼�
k1ðk2þ2l1Þðl1þl2XbÞJ3ðk2Þþk1k2l2ðXb�XÞJ1ðk2Þ
k1ðk2þ2l1ÞJ1ðk1ÞJ3ðk2Þ�k2ðk1þ2l1ÞJ1ðk2ÞJ3ðk1Þ

;

(57)

C2¼
k2ðk1þ2l1Þðl1þl2XbÞJ3ðk1Þþk1k2l2ðXb�XÞJ1ðk1Þ
k1ðk2þ2l1ÞJ1ðk1ÞJ3ðk2Þ�k2ðk1þ2l1ÞJ1ðk2ÞJ3ðk1Þ

:

(58)

Substituting these expressions into Eqs. (7), (8), and (11) we

obtain the volume-averaged densities of the energy, the mag-

netic helicity and the generalized cross helicity,

E

pl
¼ 1

2
þ u2

2
þ X2

4
� 8C1C2ðk1 þ 2l1Þðk2 þ 2l1ÞJ2ðk1ÞJ2ðk2Þ

k2
1k

2
2l

2
2

þ 2C1C2

�
1þ ðk1 þ 2l1Þðk2 þ 2l1Þ

k1k2l2
2

�

�
�

J0ðk2ÞJ1ðk1Þ � J0ðk1ÞJ1ðk2Þ
k1 � k2

� 2J1ðk1ÞJ1ðk2Þ
k1k2

�

þ
X
j¼1;2

�
�

4C2
j J2

2ðkjÞðkj þ 2l1Þ2

k4
j l

2
2

þ
�

1þ ðkj þ 2l1Þ2

k2
j l

2
2

�

�
�

C2
j

2
ð2J2

1ðkjÞ � 3J0ðkjÞJ2ðkjÞ � J2
2ðkjÞÞ þ

Dj

2

��
;

(59)

FIG. 8. Domains occupied by cylindrically symmetric and helically dis-

torted MHD relaxed states [Eqs. (41)–(43)] in the plane K �M (magnetic

helicity�cross helicity). Grey areas correspond to helically distorted states

with 3:11 < k < 3:83.
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K ¼ C1C2

k1 � k2

ðJ1ðk2ÞJ3ðk1Þ � J1ðk1ÞJ3ðk2ÞÞ

þ
X
j¼1;2

�
2CjJ2ðkjÞ

kj
þ

2C2
j

kj
ðJ2

2ðkjÞ � J1ðkjÞJ3ðkjÞÞ þ
Dj

kj

�
;

(60)

M̂ ¼ uð1þ �XÞ �C1C2l1ð3þ l2
2 � 2�l1l2Þ

�l2
2

�
�

J0ðk2ÞJ2ðk1Þ � J0ðk1ÞJ2ðk2Þ
k2

1 � k2
2

� 8J2ðk1ÞJ2ðk2Þ
k2

1k
2
2

�

þ
X
j¼1;2

�
Cjðkj þ kjl2

2 þ 2l1Þ
k2

j l
2
2

ðXJ2ðkjÞ � uJ3ðkjÞÞ

þ 2uCjJ3ðkjÞ
kj

� ðkj þ 2l1Þðkj þ kjl2
2 þ 2l1Þ

k2
j l

3
2

�
C2

j

�
J2

2ðkjÞ

� J1ðkjÞJ3ðkjÞ �
J2ðkjÞJ3ðkjÞ

kj

�
þDj

2

��
; (61)

where D1;2 are magnitudes of the helical modes (note that

helical eigenmodes of the curl operator corresponding to dif-

ferent eigenvalues k1 6¼ k2 are orthogonal29),

D1;2 ¼
1

pl

ð
H2

1;2d3r:

Equations (60) and (61) with given K and M yield two condi-

tions for determining two remaining unknowns. For a cylin-

drically symmetric state with D1;2 ¼ 0 these unknowns are

Lagrange multipliers l1 and l2 or, equivalently, k1 and k2,

since they are related to l1 and l2 by Eq. (53). For a single-

helicity state with D1 6¼ 0 and D2 ¼ 0, these unknowns are

D1 and k2 since eigenvalue k1 of the helical mode is speci-

fied now by Eq. (31). For a double-helicity state, the

unknowns are D1 and D2 since both eigenvalues k1 and k2

(and, therefore, l1 and l2) are specified by Eq. (31).

The relaxed state found in such a way is not necessarily

unique: for a given set of values of invariants there might be

more than one solution corresponding to local minima of the

energy functional. A true relaxed state should be selected as

one of them with the lowest energy. One of the examples is

illustrated in Fig. 9. It corresponds to the case when Eqs. (60)

and (61) being solved for l1 and l2 yield multi-valued func-

tion l2ðK; M̂Þ with point of condensation at l2 ¼ 0. Because

of non-uniqueness of this solution there exists a discrete set

of energy levels corresponding to given values of the invari-

ants K and M̂. The lowest energy state in Fig. 9 corresponds

to l2 ¼ 0 and is independent of the value of generalized cross

helicity M̂. The dependence of energy E on magnetic helicity

K for such state is shown in Fig. 10. Note that the non-

uniqueness of the cylindrically symmetric states is a charac-

teristic feature of the Hall MHD model, it has no practically

important applications in the single-fluid MHD model.

Despite the complexity of Eqs. (57)–(61) a simple ana-

lytical treatment of them is possible when Xb ¼ X, i.e.,

when boundary angular velocity defined by Eq. (15) is equal

to averaged angular velocity defined by Eq. (17). In the rest

of this section, we consider this case in more detail. The case

Xb 6¼ X is considered in Appendix.

When Xb ¼ X a state with the lowest energy corre-

sponds to infinitely small l2 (Fig. 9). In order to show this,

we assume that l2 is a small parameter and represent all

quantities as a power series of l2. Then

k1 ¼ �2l1 � 2l1l
2
2 þ oðl2

2Þ � 1;

k2 ¼ �
1

�
l�1

2 þ
1

�
l2 þ 2l1l

2
2 þ oðl2

2Þ � l�1
2 ;

and

C1 ¼
k1

2J1ðk1Þ
þ oð1Þ � 1;

C2 ¼ �
k1J3ðk1Þl2

2

2J1ðk1ÞJ3ðk2Þ
þ oðl2Þ � l2;

where it is also assumed that C2 � l2 (i.e., J3ðk2Þ � l2), this

assumption is justified below [see Eq. (68)]. Taking into

account leading order terms in Eqs. (54)–(56), we arrive at

FIG. 9. Volume-averaged energy density as a function of Lagrange multi-

plier l2 for all possible cylindrically symmetric Hall MHD relaxed states

[Eqs. (54)–(56)] satisfying constraints given by Eqs. (60) and (61). Results

are presented for magnetic helicity K ¼ 2, axial momentum u ¼ 0, angular

momentum X ¼ 0, boundary angular velocity Xb ¼ 0, Hall parameter

� ¼ 0:1, and two values of generalized cross helicity M̂ ¼ 0:1 (stars) and

M̂ ¼ 0:2 (circles). The state with the lowest energy corresponds to l2 ! 0

and is independent of value of M̂.

FIG. 10. Volume-averaged energy density of the Hall MHD relaxed state

[Eqs. (54)–(56)] as a function of magnetic helicity K for cylindrically sym-

metric (solid curve) and helically distorted (dashed curve) solutions. Results

are independent of generalized cross helicity M̂. Other parameters are: axial

momentum u ¼ 0, angular momentum X ¼ 0, boundary angular velocity

Xb ¼ 0, and Hall parameter � ¼ 0:1. Note that for K > 4:08, the state with

the lowest energy is helically distorted.
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A0 ¼
1

2J1ðk1Þ
½J1ðk1rÞeu þ ðJ0ðk1rÞ � J0ðk1ÞÞez� þ

H1

k1

;

(62)

b0 ¼ r� A0 ¼
k1

2J1ðk1Þ
½J1ðk1rÞeu þ J0ðk1rÞez� þH1;

(63)

v0 ¼ Xreu þ uez �
C2

l2

½J1ðk2rÞeu þ J0ðk2rÞez�; (64)

where helical mode H2 is neglected, since in order to be con-

sistent with Eq. (61) its magnitude has to be D2 ¼ oðl3
2Þ.

Equations (62)–(64) demonstrate the separation of scales in a

relaxed state: magnetic field varies slowly in radial direction

(with typical scale 1/k1) while velocity has fast varying part

(with typical scale 1/k2).

In the limit l2 ! 0, Eqs. (59)–(61) become

E

pl
¼ u2

2
þ X2

4
þ k2

1

4

�
1� J0ðk1ÞJ2ðk1Þ

J2
1ðk1Þ

�
þ k1J0ðk1Þ

4J1ðk1Þ
þ D1

2
;

(65)

K ¼ k1

2

�
1� J0ðk1ÞJ2ðk1Þ

J2
1ðk1Þ

�
þ D1

k1

; (66)

M̂ ¼ uð1þ �XÞ þ XJ2ðk1Þ
J1ðk1Þ

� 2�jl2jC2
2

pl3
2

: (67)

As one can see from Eq. (65) the fast varying part of the

velocity does not contribute into energy in leading order.

The energy of the relaxed state given by Eqs. (62)–(64) is

the sum of kinetic part, which is due to uniform axial flow

u and/or rigid azimuthal rotation X, and magnetic part,

which is due to the force-free magnetic field with fixed

magnetic helicity K. It is easy to verify that Eq. (65)

yields the lowest possible value of the energy under con-

strained magnetic helicity, axial and angular momenta.

This validates the use of the limit l2 ! 0 (or, equiva-

lently, k2 !1).

In order to complete description of the relaxed state, one

has to use Eq. (66) to determine k1 for cylindrically symmet-

ric state (with D1 ¼ 0) or D1 for helically distorted state

[with k1 satisfying Eq. (31)]. Amplitude C2 is then deter-

mined from Eq. (67),

C2
2 ¼

pl2
2

2�

����M̂ � uð1þ �XÞ � XJ2ðk1Þ
J1ðk1Þ

���� � l2
2; (68)

which justifies assumption made above.

Though formally the terms in brackets in Eq. (64) are of

order 1, they are negligible for any radius r > 0 in the limit

k2 !1. For large arguments k2r � 1, Bessel functions

entering Eq. (64) are bounded,

jJmðk2rÞj 	
ffiffiffiffiffiffiffiffiffiffiffiffi

2

pjk2jr

s
! 0; k2 !1:

Therefore, at any fixed radius r > 0 the relaxed velocity is

asymptotically close to

v0 ¼ Xreu þ uez: (69)

We should also note that the boundary value of azimuthal

velocity from Eq. (69) is

vu

����
r¼1

¼ X;

which is consistent with the assumed condition Xb ¼ X. So,

Eqs. (62)–(64) describe the lowest energy Hall MHD state

satisfying all imposed constraints given by Eqs. (8), (11),

and (14)–(17) with Xb ¼ X.

Note that the relaxed magnetic field given by Eq. (63) is

nothing else but a force-free Taylor state (r� b0 ¼ k1b0),

i.e., it is a state with minimal magnetic energy under the con-

straints of constant magnetic helicity and total axial mag-

netic flux (Fig. 11). On the other hand, the asymptotic form

of the relaxed velocity given by Eq. (69) is the flow, which

minimizes kinetic energy with the constraints of constant

axial and angular momenta. Thus, the Hall MHD relaxed

state [Eqs. (62), (63), and (69)] can be found formally from

the energy minimization procedure if one ignores the gener-

alized cross helicity constraint.

This result is in agreement with the earlier considera-

tions first made with the use of simple model in Ref. 20 and

later for full Hall MHD model in Ref. 23. As mentioned

there, it is a manifestation of the ill-posed variational prob-

lem: the constraint Î2 (generalized cross helicity) is more

“fragile” than the target functional E (energy), since Î2 con-

tains higher-order derivatives of velocity v in comparison

with E. This result suggests that the relaxation in Hall MHD

systems happens in such a manner as if there is no conserva-

tion of the generalized cross helicity. Such “fragility” of the

generalized cross helicity in a real RFP experiment can be

explained by its fast viscous decay due to an extra derivative

of velocity and due to no-slip condition at the cylindrical

boundary. The final relaxed state is trivial; it is the force-free

magnetic field (Taylor state) and uniform axial flow and/or

rigid rotation of plasma.

FIG. 11. Cylindrically symmetric Hall MHD relaxed state [Eqs. (54)–(56)]

with the lowest energy, corresponding to a classical Taylor (force-free) state.

The state is independent of generalized cross helicity M̂. Other parameters

are: magnetic helicity K ¼ 2, axial momentum u ¼ 0, angular momentum

X ¼ 0, boundary angular velocity Xb ¼ 0, and Hall parameter � ¼ 0:1. Note

that such state has no flows since both momentum invariants u and X are

zero.
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From the mathematical point of view, obtained Hall

MHD relaxed state corresponds to a single-fluid MHD

relaxed state [Eqs. (23)–(25)] with l2 ¼ 0. Similar to

single-fluid MHD case, helically distorted Hall MHD

relaxed state can be oscillatory in time if v0 6¼ 0. The non-

cylindrical part of the relaxed magnetic field H1 is the heli-

cal wave with the wave-vector k ¼ m=reu þ kzez and the

phase velocity vph ¼ v0, so the frequency of oscillations is

[cf. Eq. (34)],

x ¼ �k � v0 ¼ �mX� kzu: (70)

The transition of the force-free magnetic field to helically

distorted state with k ¼ 3:11 occurs when magnetic helicity

K > 4:08 [Sec. III A].

We stress here that the presence of the flow in the Hall

MHD relaxed states is fully due to the inclusion of momenta

invariants I5 and I6 into energy minimization procedure. If

we ignore them to better adapt the model to the features of

RFP experiments [see explanation in Sec. III B], the final

Hall MHD state will be just force-free (Taylor) magnetic

field with no plasma flows. Obviously, such state cannot

explain the flows observed in RFP experiments.

V. COMPARISON WITH EXPERIMENT

In this section, we compare theoretically predicted

relaxed velocity with the plasma velocity measurements in

the Madison symmetric torus (MST) RFP experiment taken

from Ref. 7. For comparison we use single-fluid MHD

relaxed state [Eqs. (41)–(43)] from Sec. III B (with flow par-

allel to the force-free magnetic field), since it is obtained

under assumptions consistent with realistic RFP experiment.

As pointed out in Sec. IV, Hall MHD relaxed state under

these assumptions does not have flows, so it cannot be used

for comparison.

The MST RFP has a major radius R ¼ 1:5 m and a

minor radius a ¼ 0:5 m; the other plasma parameters

relevant to our study are as follows: the line-averaged den-

sity is n 
 1� 1013 cm�3, the plasma current is

Ip ¼ 200�250 kA, the reversal parameter is F 
 �0:2, and

the pinch parameter is H 
 1:7.

MST plasmas exhibit quasiperiodic (sawtooth) oscilla-

tions, which are characterized by sudden bursts in all plasma

diagnostics. Sawtooth oscillations in the MST consist of a

fast crash phase (�0.1 ms) and a slow recovery phase

(�3 ms). During the crash plasma relaxes towards its mini-

mum energy state.3,4 This relaxation event is accompanied

by a rapid flattening of the plasma parallel momentum profile

(Fig. 12).

In order to compare predictions of the relaxation theory

with experimental observations presented in Fig. 12, we find

parallel momentum normalized by the magnetic field using

Eqs. (42) and (43),

qjj �
v0 � b0

b2
0

¼ �l2; (71)

where l2 is constant independent of radius and can be cal-

culated from Eq. (46). This result is in agreement with the

observed flattening of the parallel momentum profile during

relaxation events. The momentum profile flattening is mostly

noticeable in the plasma core, while the changes at the edge

are small (Fig. 12). This is similar to the incomplete relaxa-

tion of the parallel current profile observed in these relaxa-

tion events.3

We emphasize that the relaxation theory is developed

for isolated systems, while the MST experiment is an open

system with external energy supply. However, even in open

systems, where energy relaxation happens much faster than

dissipative decay of the invariants, the principle of selective

decay remains valid, and the present theory can be applied.

This is the case of the MST RFP experiment, in which

the characteristic energy relaxation time (crash phase,

tcrash � 0.1 ms) is much shorter than the dissipation time

(tdiss � 100 ms).

VI. CONCLUSION

In the present paper, the application of the Taylor relax-

ation theory to a cylindrical plasma pinch was generalized

by inclusion into energy minimization procedure of velocity

related ideal invariants. We obtained the minimum energy

(relaxed) states within the framework of both single-fluid

and Hall MHD. When we began the calculations, our moti-

vation and expectation was that more general Hall MHD

would lead to more diverse relaxed states than single-fluid

MHD, and that these might help to explain the rotation that

seems to be ubiquitous in the RFP experimental results. To

our surprise, it was not so. It turned out that accurate minimi-

zation of the energy E in the Hall MHD model leads only to

the force-free Taylor magnetic field and simple flows (rigid

rotation and/or uniform axial flow), while MHD relaxed

states are much more complex and diverse. Physically this

suggests that the difference between two models appears in

the process of relaxation in the way that makes Hall MHD

states simpler. From the mathematical point of view, this is

due to ill-posedness of the variational problem in the Hall

MHD, which is related to “fragility” of the generalized cross

helicity Î2 explained at the end of Sec. IV. Our formal analy-

sis shows that accurate energy minimizations in the Hall

MHD with or without generalized cross helicity lead to the

FIG. 12. Radial profile of the parallel momentum normalized by the mag-

netic field before (squares) and during (circles) the relaxation event in MST.

Reprinted with permission from A. Kuritsyn, G. Fiksel, A. F. Almagri, D. L.

Brower, W. X. Ding, M. C. Miller, V. V. Mirnov, S. C. Prager, and J. S.

Sarff, Phys. Plasmas 16, 055903 (2009). Copyright 2009, American Institute

of Physics.
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same result. Therefore, during Hall MHD relaxation in a

weakly dissipative system one should expect rapid viscous

decay of the generalized cross helicity—it is not a robust

invariant and does not affect the final relaxed state.

In both single-fluid and Hall MHD models, depending

on initial values of the corresponding invariants the relaxed

states can be either cylindrically or helically symmetric. The

interesting property of the helically symmetric relaxed states

is their oscillatory behavior. The helical distortion of relaxed

velocity and magnetic field acts as a helical wave, propagat-

ing on a cylindrically symmetric background. The phase ve-

locity of such a wave is not zero only when the initial values

of velocity related invariants are not zero.

Like all variational theories of plasma relaxation, the

present calculation is silent as to the details of the dynamics

that are responsible for the relaxation process. The only

requirement is that they preserve the robust invariants

assumed during the variational procedure. The comparison

of the theoretically predicted relaxed states with MST RFP

experiment (Sec. V) shows that the ideal single-fluid MHD

results are in better qualitative agreement with the experi-

mental data than the Hall MHD results. The single-fluid

MHD yields more complex states with flow and agrees better

with experimental results, than Hall MHD. The Hall effect

(or other non-MHD effects) can influence the relaxation dy-

namics, but the final relaxed state in the experiment resem-

bles the minimum energy state from the single-fluid MHD.

Further insight in this regard requires more detailed experi-

mental measurements and large scale computer simulations.
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APPENDIX: RELAXED STATES IN HALL MHD
FOR Xb 6¼ X

In general case, when Xb 6¼ X, there are no simple ana-

lytical solutions to Eqs. (57)–(61). In order to find, for exam-

ple, a cylindrically symmetric relaxed state (so, D1;2 ¼ 0),

one has to solve Eqs. (60) and (61) for l1 and l2 (or, equiva-

lently, for k1 and k2), substitute found values into Eqs.

(57)–(59), and if there are several solutions, choose the state

with the lowest energy. Such procedure can be realized

numerically and it leads to non-trivial profiles of magnetic

field and velocity (Fig. 13). It should be emphasized here

that the non-trivial relaxed states obtained in this way do not

always have a smooth transition to a trivial state [Eqs. (62),

(63), and (69)] when Xb ! X.

We note that the Lagrange multipliers method applied to

a minimization problem with constraints gives a solution from

a class of continuous, differentiable functions. If we are not

restricted to this class of functions, it is possible to construct a

discontinuous relaxed state, which has lower energy than any

other state. Indeed, let us represent velocity in the form,

v ¼ uþ ðXb � XÞSðrÞeu; (A1)

where u is assumed to be spatially continuous and SðrÞ is a

discontinuous function describing a spike at the boundary,

SðrÞ ¼
�

0; r 6¼ 1;
1; r ¼ 1:

For such representation of velocity, the generalized cross

helicity constraint now has a form,

Î2 ¼
ð

u � ðbþ �
2
r� uÞd3rþ pl�ðXb � XÞuz

����
r¼1

;

Î2

����
s¼0

¼ plM̂;

(A2)

and the azimuthal component of u should satisfy boundary

condition [cf. Eq. (15)],ð2p

0

uu

����
r¼1

du ¼ 2pX: (A3)

In terms of continuous differentiable functions b and u, the

problem is now reduced to the case Xb ¼ X with modified

generalized cross helicity [Eq. (A2)]. Hence, continuous part

of the relaxed state is determined by Eqs. (62), (63), and

(69). The spike discontinuity at the boundary introduced in

Eq. (A1) enters the azimuthal component of the relaxed

velocity,

v0 ¼ Xreu þ uez þ ðXb � XÞSðrÞeu: (A4)

The state given by Eqs. (62), (63), and (A4) has the lowest

possible energy under imposed constraints. Therefore, iso-

lated dissipative Hall MHD system will tend to relax toward

this state.

A discontinuity at the boundary in the relaxed azimuthal

velocity Eq. (A4) is due to the assumption that axial flux of

the fluid vorticity I4 [Eq. (15)] is conserved. However, simi-

lar to the generalized cross helicity, this constraint is more

“fragile” than the energy since it contains higher-order deriv-

atives of the velocity. As a result, ideal invariant I4 is more

FIG. 13. Example of a “smooth” cylindrically symmetric Hall MHD relaxed

state [Eqs. (54)–(56)], which is not a true minimum energy state. Calcula-

tions are done for magnetic helicity K ¼ 2, generalized cross helicity

M̂ ¼ 0:1, boundary angular velocity Xb ¼ 0, axial momentum u ¼ 0, angu-

lar momentum X ¼ 0:1, and Hall parameter � ¼ 0:1. Solid lines are compo-

nents of magnetic field and dashed lines are components of velocity.
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susceptible to dissipation than energy and cannot be consid-

ered as a constant during relaxation. Ignoring this invariant

in the energy minimization procedure, we obtain Eq. (69) for

the relaxed velocity without any discontinuities.

The relaxed state obtained in such way is exactly the

state described by Eqs. (62), (63), and (69), and all results of

Sec. IV also apply. So, the final relaxed state of the cylindri-

cal pinch in the Hall MHD is always a trivial state with the

force-free magnetic field (Taylor state) and uniform axial

flow and/or rigid rotation of plasma.
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